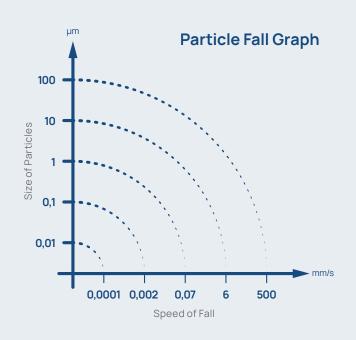


CATALOGUE

PARTICLES

Due to the increasing air pollution in our world, the effect of particles on human health has begun to be studied more comprehensively. As a result, it has emerged that fine dust creates a serious health hazard, causing respiratory diseases and cancer, and has become the agenda.



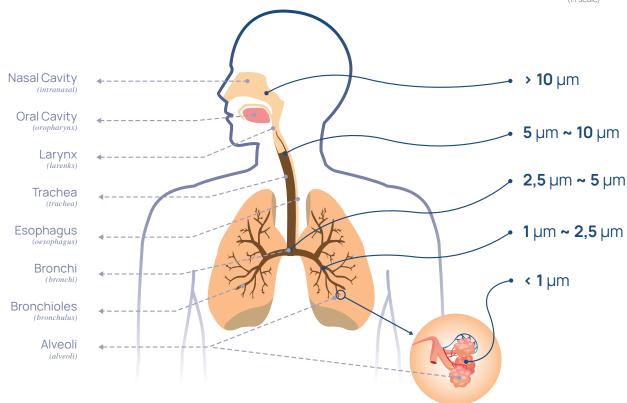
Human Hair
75 µm ~ 150 µm

Particles
Smaller than 1 µm

Particles larger than 10 µm in the atmosphere precipitate very quickly and can only hang in the air near their source and with strong winds.

In a room without air flow, the falling rates of the particles occur as in the graph.

Dimensions of Smoke and Dust


Generated in the Industry

Most particles larger than 10 μm in diameter are visible to the naked eye with the appropriate angle of light and contrast. Under normal conditions, our eyes can see particles of 30 μm and above.

1 μ m = 1/1000mm

- The first image on the graph is approximately 500 μm
- The thickness of human hair is 100 μm
- The smallest particle that can be seen by naked eye >10 μm
- Particles harmful to human health <5 µm
- Coarse dusts generated from industrial applications >10 µm
- Fine dusts generated from industrial applications <10 μm
- Welding fume <1 μm (0,2 0,8 μm)

5 μm **~ 10** μm

Larger particles in the 5 µm-10 µm range are separated and retained by the upper respiratory tract. From here, it is quickly swallowed or easily expelled by coughing.

2,5 μm **~ 5** μm

Particles in the range of 2.5 µm-5 µm are most likely to be retained in human lungs and are sent back to the upper respiratory system without going deep into the lungs.

1 μm **~ 2,5** μm

Particles in the range of 1 µm-2.5 µm are retained in the bronchi and cause risks to human health.

1 µm


Particles in the range of 1 µm and below are small enough to pass through the cell membranes of the alveoli and mix into the blood stream.

Why ISO16890 standard is needed instead of EN779

According to the EN779:2012 standard, a synthetic dust known as ASHRAE is used for efficiency test of an air filter.

The test is performed by loading the filter with this dust in the laboratory environment and the evaluation is made by calculating the efficiency

In operating conditions, filters are exposed to pollutants in a different particle size range. Therefore, these values obtained in the laboratory environment are insufficient to determine the performance of an air filter.

^{eststaub}/ Test dust

For that reason, with ISO16890 standard, filter users will have the opportunity to choose the filter much more precisely suitable for their needs.

> The ISO16890 standard, unlike the EN779 standard, calculates the particle size in the range of 0.3 µm -10 µm for efficiency evaluation.

(Particulate Matter = PM)

FILTER SELECTION CHART

	Particle Size	EN 779	Average Efficiency	ISO 16890
DDE	> 10 µm	G2	65 ≤ Am < 80	Coarse 40%
PRE Filters	G3	80 ≤ Am < 90	Coarse 50%	
riiters	3 ~ 10 µm	G4	90 ≤ Am	Coarse 70%

	Particle Size	EN 779 Average Efficiency	ISO 16890			
	Pai ticle Size		Average Efficiency	ePM ₁	ePM _{2,5}	ePM ₁₀
		M5	40 ≤ Em < 60	5% ~ 35%	10% ~ 45%	40% ~ 70%
SENSITIVE	1 ~ 3 µm	M6	60 ≤ Em < 80	10% ~ 40%	20% ~ 50%	60% ~ 80%
Filters		F7	80 ≤ Em < 90	40% ~ 65%	65% ~ 75%	80% ~ 90%
0,3 ~ 1 µm	F8	90 ≤ Em < 95	65% ~ 90%	75% ~ 95%	90% → 95%	
		F9	95 ≤ Em	80% ~ 90%	85% ~ 95%	90% → 95%

	Particle Size	Average Efficiency	EN 1822	Average Efficiency
		ễ % @ 0,3 μm		£ % @ MPPS
EPA	0,3 ~ 1 µm	≤ 95	E 10	≤ 85
Filters	< 0,3 µm	≤ 98	E 11	≤ 95
	ν 0,5 μπ	≤ 99.99	E 12	≤ 99.5

	Particle Size	Average Efficiency	EN 1822	Average Efficiency
HEPA		ễ % @ 0,3 μm		Ē%⊚MPPS
Filters	< 0,3 µm	≤ 99.997	H 13	≤ 99.95
Tillers		≤ 99.999	H 14	≤ 99.995

	Particle Size	Average Efficiency	EN 1822	Average Efficiency	
		Ē % @ 0,12 μm			
ULPA	0.0 01	≤ 99.9995	U 15	≤ 99.9995	
Filters	0,2 ~ 0,1 µm	≤ 99.99995	U 16	≤ 99.99995	
		≤ 99.999995	U 17	≤ 99.999995	

PRODUCT SELECTION CHART

	Mobile Filters That Are Advised For Welding Application	M1	M2	М3
MOBILE	Unalloyed & Low-alloyed steel (Nickel and Chromium additive < %30)	\odot	\otimes	\odot
	High Alloyed Steel (Nickel and Chromium additive > %30)	×	×	⊘
	Stationary Filters That are Advised for Welding Application		SM	SMK
STATIONARY	Unalloyed & Low-alloyed steel (Nickel and Chromium additive < %30)		Ø	⊘
	High Alloyed Steel (Nickel and Chromium additive > %30)		×	Ø
	Downdraft Tables That are Advised for Welding Application		KMF	KTF
TABLE	Unalloyed & Low-alloyed steel (Nickel and Chromium additive < %30)		⊘	Ø
	High Alloyed Steel (Nickel and Chromium additive > %30)		×	Ø
	High Vacuum Units That are Advised for Welding Application		TORFIL/125	TORFIL/500
HIGH	Corner Weld		Ø	⊘
Butt Weld			×	×
	Units that are Advised for Robotic Welding Applications	SMK/920	i8	TORFIL/50
ROBOTIC	Fume Extraction from Closed Cabin	\oslash	⊘	×
ROBOTIC	Fume Extraction from Torch	×	×	\otimes
	Fume Extraction with Hood	×	⊘	×
	Dust Collection	M3 JetPulse	KTF JetPulse	PULSATRO
DUST	ISO ePM,	Ø		\oslash
COLLECTION	ISO ePM _{2.5}	×	\odot	
COLLECTION	1	×	×	∅∅
COLLECTION	ISO ePM ₂₅			
OILMIST	ISO ePM _{2.5} ISO ePM ₁₀	×	×	
	ISO ePM _{2.5} ISO ePM ₁₀ Oil Mist / Smoke	CLEANMIST	× MIST COMPACT	MCOS
	ISO ePM _{2.5} ISO ePM ₁₀ Oil Mist / Smoke Coolants Coolant oil and Water Emulsion	CLEANMIST	× MIST COMPACT	✓MCOS✓
	ISO ePM _{2.5} ISO ePM ₁₀ Oil Mist / Smoke Coolants Coolant oil and Water Emulsion Cutting and Petroleum Oil 100%	CLEANMIST	× MIST COMPACT	MCOS


Fully Automatic Displacement Ventilation

CATALOG CONTENT

This catalog has been designed and prepared for publication within FRESHWELD. There may be changes in the color and features of the products presented in the catalog. Copying and/or using the catalog content as a reference is not allowed. All rights reserved. © 2022

M1/1100

Mobile Unit Lockable Wheels

2m Single Acrobat Arm

Disposable Cassette Filter ePM₁ 80% (F9)

Specifications

- Low energy consumption, high performance
- · Movable thanks to its wheeled structure
- Minimizing the loss of worktime by carrying out the maintenance only during filter change time thanks to the filter indicator buttons
- Minimizing the risk of fire related to the sparks thanks to its washable aluminium mesh pre filter
- Easy to use on welding process thanks to its 2 meter extraction arm connection
- Possible to add alternative filter options without changing the current body
- · 2,7m feeding cable

Usage Areas

- Suitable for filtering fume occured during welding process
- Suitable for laser marking and processing machines
- Suitable for processing unalloyed and low-alloy steel
- Suitable for filtering low level of fume

General Information

Filter Information	
Filter Method	2 stages filtration
Filter Type	Disposable Cassette Filter
Filtration Surface Area	9 m²
1 st stage	Mesh Spark Arrestor
2 nd stage	ePM ₁ 80% (F9)

Spare Filter Order Code

ePM ₁ 80% (F9)	1202F9AF01	


Product Order Code

Main unit without arm	111M221000
Unit with 2m arm	111M221002

Device Information	
Dimensions (W x D x H)	480 x 480 x 820 mm
Weight (without arm)	49 kg
Arm Diameter	Ø152mm
Motor Power	575 watt
Supply Voltage	1x230V/50Hz
Noise Level	65 dB
Maximum Pressure	1200 Pa
Extraction Capacity	850 m³/h

MobilEco

M2/2100

Mobile Unit Lockable Wheels

Single Acrobat Arm Length Options

Disposable Cassette Filter ePM₁ 65% (F8)

Specifications

- · Movable thanks to its wheeled structure
- Reachable to desired area thanks to its flexible arm structure
- Fully complies with European Machinery Safety Regulation
- Minimizing the loss of worktime by carrying out the maintenance only during filter change time thanks to the filter indicator buttons
- Minimizing the risk of fire related to the sparks thanks to its aluminium spark arrestor
- If the phase sequence is wrong or there is a missing phase, the device will not work and the motor will be protected from burning
- If the fan turns in the opposite direction, the warning lamp comes on.
- 3m feeding cable

Usage Areas

- Designed for filtering fume and fine dust occured during welding process
- Suitable for processing unalloyed and low-alloy steel
- Suitable for filtering low and medium level of fume and dust

General Information

Filter Information	
Filter Method	3 stages filtration
Filter Type	Disposable Cassette Filter
Filtration Surface Area	16m²
1 st stage	Mesh Spark Arrestor
2 nd stage	Coarse 70% (G4 pre-filter)
3 rd stage	ePM ₁ 65% (F8)

Spare Filter Order Code

Coarse 70% (G4 pre-Filter)	1201G4OF01
ePM ₁ 65% (F8)	1202F8AF02

Product Order Code

Main unit without arm	111M221000
Unit with 2m arm	111M221002
Unit with 3m arm	111M221003
Unit with 4m arm	111M221004

Device Information	
Dimensions (WxDxH)	650 x 750 x 1125 mm
Weight (without arm)	96 kg
Arm Diameter	Ø152mm
Motor Power	1,1 kW
Supply Voltage	3x400V/50Hz
Noise Level	72 dB
Maximum Pressure	2000 Pa
Extraction Capacity	1300m³/h

M2/2200

Mobile Unit Lockable Wheels

Double Acrobat Arm Length Options

Disposable Cassette Filter ePM₁ 65% (F8)

Specifications

- Possible to use at 2 different welding sources at the same time thanks to the flexible arm structure
- Unused arm could be closed easily thanks to flow rate adjustable damper
- Fully complies with European Machinery Safety Regulation
- Minimizing the loss of worktime by carrying out the maintenance only during filter change time thanks to the filter indicator buttons
- Minimizing the risk of fire related to the sparks thanks to its aluminium spark arrestor
- If the phase sequence is wrong or there is a missing phase, the device will not work and the motor will be protected from burning
- If the fan turns in the opposite direction, the warning lamp comes on.
- · 3m feeding cable

Usage Areas

- Designed for filtering fume and fine dust occured during welding process
- Suitable for processing unalloyed and low-alloy steel
- Suitable for filtering low and medium level of fume and dust

General Information

Filter Information	
Filter Method	3 stages filtration
Filter Type	Disposable Cassette Filter
Filtration Surface Area	16m²
1 st stage	Mesh Spark Arrestor
2 nd stage	Coarse 70% (G4 pre-filter)
3 rd stage	ePM ₁ 65% (F8)

Spare Filter Order Code

-	Coarse 70% (G4 pre-Filter)	1201G4OF01
	ePM ₁ 65% (F8)	1202F8AF02

Product Order Code

Main unit without arm	111M222000
Unit with 2m arm	111M222002
Unit with 3m arm	111M222003
Unit with 4m arm	111M222004

Device Information	
Dimensions (WxDxH)	650 x 750 x 1125 mm
Weight (without arm)	99 kg
Arm Diameter	Ø152mm
Motor Power	1,5 kW
Supply Voltage	3x400V/50Hz
Noise Level	72 dB
Maximum Pressure	2200 Pa
Extraction Capacity	2 x 850m³/h

M3/2100

Mobile Unit Lockable Wheels

Single Acrobat Arm Length Options

Activated Carbon Filter
Odor and Gas Retention

HEPA FilterHigh Efficiency Filtration

Jet-Pulse Automatic Filter Cleaning

Specifications

- · Movable thanks to its wheeled structure
- Reachable to desired area thanks to its flexible arm structure
- Fully complies with European Machinery Safety Regulation
- Minimizing the loss of worktime by carrying out the maintenance only during filter change time thanks to the filter indicator buttons
- Minimizing the risk of fire related to the sparks thanks to its aluminium spark arrestor
- If the phase sequence is wrong or there is a missing phase, the device will not work and the motor will be protected from burning
- If the fan turns in the opposite direction, the warning lamp comes on.
- 3m feeding cable

Usage Areas

- Designed for filtering fume and fine dust occured during welding process
- Suitable for processing unalloyed and low-alloy steel
- Suitable for filtering low, medium or high level of fume and dust

General Information

Filter Information	
Filter Method	
Filter Type	see: FILTERS
Filtration Surface Area	
1 st stage	
2 nd stage	see: FILTERS
3 rd stage	- 300.11212110
4 th stage	

Spare Filter Order Code

For Alternatives see: FILTERS	

Product Order Code	Activated C.	HEPA Filter	Jet-Pulse
Main unit without arm	121M321000	122M321000	123M321000
Unit with 2m arm	121M321002	122M321002	123M321002
Unit with 3m arm	121M321003	122M321003	123M321003
Unit with 4m arm	121M321004	122M321004	123M321004

Device Information	
Dimensions (WxDxH)	650 x 750 x 1125 mm
Weight (without arm)	115 kg
Arm Diameter	Ø152mm
Motor Power	1,5 kW
Supply Voltage	3x400V/50Hz
Noise Level	72 dB
Maximum Pressure	2200 Pa
Extraction Capacity	see: FILTERS

M3/2200

Mobile Unit Lockable Wheels

Double Acrobat Arm Length Options

Activated Carbon Filter
Odor and Gas Retention

HEPA Filter
High Efficiency Filtration

Jet-Pulse Automatic Filter Cleaning

Specifications

- · Movable thanks to its wheeled structure
- Reachable to desired area thanks to its flexible arm structure
- Fully complies with European Machinery Safety Regulation
- Minimizing the loss of worktime by carrying out the maintenance only during filter change time thanks to the filter indicator buttons
- Minimizing the risk of fire related to the sparks thanks to its aluminium spark arrestor
- If the phase sequence is wrong or there is a missing phase, the device will not work and the motor will be protected from burning
- If the fan turns in the opposite direction, the warning lamp comes on.
- 3m feeding cable

Usage Areas

- Designed for filtering fume and fine dust occured during welding process
- Suitable for processing unalloyed and low-alloy steel
- Suitable for filtering low, medium or high level of fume and dust

General Information

Filter Information	
Filter Method	
Filter Type	see: FILTERS
Filtration Surface Area	_
1 st stage	
2 nd stage	see: FILTERS
3 rd stage	- SOUTHERENO
4 th stage	

Spare Filter Order Code

For Alternatives	see: FILTERS	

Product Order Code	Activated C.	HEPA Filter	Jet-Pulse
Main unit without arm	121M322000	122M322000	123M322000
Unit with 2m arm	121M322002	122M322002	123M322002
Unit with 3m arm	121M322003	122M322003	123M322003
Unit with 4m arm	121M322004	122M322004	123M322004

Device Information	
Dimensions (W x D x H)	650 x 750 x 1125 mm
Weight (without arm)	118 kg
Arm Diameter	Ø152mm
Motor Power	1,5 kW
Supply Voltage	3x400V/50Hz
Noise Level	72 dB
Maximum Pressure	2200 Pa
Extraction Capacity	see: FILTERS

FILTERS

Filters for M3/2100 and M3/2200 Models

Activated CarbonFilter

The activated carbon filter captures and traps gas molecules. It prevents the passage of harmful gases. Activated carbon is a must for ventilation systems. There are many (even millions of) pores on the surface of the activated carbon filter. These pores captures harmful gases and odors and detain them inside.

HEPA FilterHigh Efficiency Filtration

HEPA Filters have 85% and above efficiency. They are the filters that can purify particles up to 0,3 microns in the ambient air. The ones with 99,97% efficiency are called True HEPA Filter while the ones with 99,99% efficiency are called ULPA Filter. A HEPA Filter's filter efficiency rate is 99,995%

Jet-PulseAutomatic Filter Cleaning

The system known as also Pulse Jet is the system that automatically cleans the filters with compressed air in the opposite direction as an alternative to the problems occured during filter change. Waste materials released from the cleaned filters are collected in the waste drawer located under the units.

M3/2100

M3/2200

Filter Method	4 stages filtration
Filter Type	Disposable Cassette Filter
Filtration Surface Area	16m²
1st stage	Mesh Spark Arrestor
2 nd stage	Coarse 70% (G4 pre-filter)
3 rd stage	ePM ₁ 65% (F8)
4 th stage	Activated Carbon Filter
Extraction Capacity	1300m³/h
Coarse 70% (G4 pre-filter)	1201G4OF01
ePM ₁ 65% (F8)	1202F8AF02
Granule Activated Carbon	1203AKKF01

Filter Method	4 stages filtration
Filter Type	Disposable Cassette Filter
Filtration Surface Area	16m ²
1 st stage	Mesh Spark Arrestor
2 nd stage	Coarse 70% (G4 pre-filter)
3 rd stage	ePM ₁ 65% (F8)
4 th stage	Activated Carbon Filter
Extraction Capacity	2 x 750m³/h
Coarse 70% (G4 pre-filter)	1201G4OF01
ePM ₁ 65% (F8)	1202F8AF02
Granule Activated Carbon	1203AKKF01

Filter Method	4 stages filtration
Filter Type	Disposable Cassette Filter
Filtration Surface Area	27m²
1st stage	Mesh Spark Arrestor
2 nd stage	Coarse 70% (G4 pre-filter)
3 rd stage	ePM ₁ 65% (F8)
4 th stage	H13 HEPA Filter 11m ²
Extraction Capacity	1300m³/h
Coarse 70% (G4 pre-filter)	1201G4OF01
ePM ₁ 65% (F8)	1202F8AF02
H13 HEPA Filter 11m ²	1202HPAF04

Filter Method	4 stages filtration
Filter Type	Disposable Cassette Filter
Filtration Surface Area	27m²
1 st stage	Mesh Spark Arrestor
2 nd stage	Coarse 70% (G4 pre-filter)
3 rd stage	ePM ₁ 65% (F8)
4 th stage	H13 HEPA Filter 11m²
Extraction Capacity	2 x 750m³/h
Coarse 70% (G4 pre-filter)	1201G4OF01
ePM ₁ 65% (F8)	1202F8AF02
H13 HEPA Filter 11m ²	1202HPAF04

Filter Method	Automatic Cleanable
Filter Type	Jet-Pulse Cartridge Filter
Filtration Surface Area	2 x 10 m ²
1st stage	Mesh Spark Arrestor
2 nd stage	ePM ₁₀ 60% (M6) 2 x 10m ²
Compressed Air	5 - 6 bar
Extraction Capacity	1300m ³ /h
ePM ₁₀ 60% (M6) 10m ²	1202M6AF05

Filter Method	Automatic Cleanable
Filter Type	Jet-Pulse Cartridge Filter
Filtration Surface Area	2 x 10 m ²
1st stage	Mesh Spark Arrestor
2 nd stage	ePM ₁₀ 60% (M6) 2 x 10m ²
Compressed Air	5 - 6 bar
Extraction Capacity	2 x 1000m³/h
ePM ₁₀ 60% (M6) 10m ²	1202M6AF05

SM/910

Stationary UnitProvides Space Advantage

Single Acrobat Arm Length Options

Disposable Cassette Filter ePM₁ 65% (F8)

Specifications

- Easy to use in workshops with limited spaces
- Reachable to desired area thanks to its flexible arm structure
- Fully complies with European Machinery Safety Regulation
- Minimizing the loss of worktime by carrying out the maintenance only during filter change time thanks to the filter indicator buttons
- Minimizing the risk of fire related to the sparks thanks to its aluminium spark arrestor
- If the phase sequence is wrong or there is a missing phase, the device will not work and the motor will be protected from burning
- If the fan turns in the opposite direction, the warning lamp comes on.
- Easy access thanks to external control panel

Usage Areas

- Designed for filtering fume and fine dust occured during welding process
- Suitable for processing unalloyed and low-alloy steel welding
- Suitable for filtering low and medium level of fume and dust

General Information

Filter Information	
Filter Method	3 stages filtration
Filter Type	Disposable Cassette Filter
Filtration Surface Area	16m²
1 st stage	Mesh Spark Arrestor
2 nd stage	Coarse 70% (G4 pre-filter)
3 rd stage	ePM ₁ 65% (F8)

Spare Filter Order Code

Coarse 70% (G4 pre-Filter)	1201G4OF01
ePM ₁ 65% (F8)	1202F8AF02

Product Order Code

Main unit without arm	211SM91000
Unit with 2m arm	211SM91002
Unit with 3m arm	211SM91003
Unit with 4m arm	211SM91004

Device Information	
Dimensions (W x D x H) 650	x 750 x 1125 mm
Weight (without arm) 96 k	g
Arm Diameter Ø152	2mm
Motor Power 1,1 kV	N
Supply Voltage 3x40	00V/50Hz
Noise Level 72 d	В
Maximum Pressure 2000	0 Pa
Extraction Capacity 1300)m³/h

SM/920

Stationary UnitProvides Space Advantage

Double Acrobat Arm

Length Options

Disposable Cassette Filter

ePM₁ 65% (F8)

Specifications

- Easy to use in workshops with limited spaces
- Reachable to desired area thanks to its flexible arm structure
- Fully complies with European Machinery Safety Regulation
- Minimizing the loss of worktime by carrying out the maintenance only during filter change time thanks to the filter indicator buttons
- Minimizing the risk of fire related to the sparks thanks to its aluminium spark arrestor
- If the phase sequence is wrong or there is a missing phase, the device will not work and the motor will be protected from burning
- If the fan turns in the opposite direction, the warning lamp comes on.
- Easy access thanks to external control panel

Usage Areas

- Designed for filtering fume and fine dust occured during welding process
- Suitable for processing unalloyed and low-alloy steel welding
- Suitable for filtering low and medium level of fume and dust

General Information

Filter Information	
Filter Method	3 stages filtration
Filter Type	Disposable Cassette Filter
Filtration Surface Area	16m²
1 st stage	Mesh Spark Arrestor
2 nd stage	Coarse 70% (G4 pre-filter)
3 rd stage	ePM ₁ 65% (F8)

Spare Filter Order Code

Coarse 70% (G4 pre-Filter)	1201G4OF01
ePM ₁ 65% (F8)	1202F8AF02

Product Order Code

Main unit without arm	211SM92000
Unit with 2m arm	211SM92002
Unit with 3m arm	211SM92003
Unit with 4m arm	211SM92004

Device Information	
Dimensions (WxDxH)	650 x 750 x 1125 mm
Weight (without arm)	99 kg
Arm Diameter	Ø152mm
Motor Power	1,5 kW
Supply Voltage	3x400V/50Hz
Noise Level	72 dB
Maximum Pressure	2200 Pa
Extraction Capacity	2x850 m³/h

SMK/910

Stationary Unit Provides Space Advantage

Single Acrobat Arm Length Options

Activated Carbon Filter

Odor and Gas Retention

HEPA Filter High Efficiency Filtration

Specifications

- · Easy to use in workshops which has limited spaces
- · Reachable to desired area thanks to its flexible arm structure
- Fully complies with EU Machinery Safety Regulation
- · Minimizing the loss of worktime by carrying out the maintenance only during filter change time thanks to the filter indicator buttons
- · Minimizing the risk of fire related to the sparks thanks to its aluminium spark arrestor
- If the phase sequence is wrong or there is a missing phase, the device will not work and the motor will be protected from burning
- · If the fan turns in the opposite direction, the warning lamp comes on.
- · Easy access thanks to external control panel

Usage Areas (Activated Carbon Filter)

- · Designed to filter fume, dust and vapour occured during welding and chemical applications
- · Suitable for unalloyed, low alloyed and high alloyed steel welding
- · Suitable for filtering vapour occured during light level of chemical applications
- Proper to use for suction of odor molecules as well

Usage Areas (HEPA Filter)

- · Designed to filter fume occured during welding applications of high alloy metals
- · Suitable for unalloyed, low alloyed and high alloyed steel welding
- · Suitable for filtering vapour occured during light and medium level of fume and dust
- It is suitable for environments where Hepa filter is required to return the purified air to the same ambient

General Information	AC Filter	HEPA Filter
Filter Information		
Filter Method	3 stages filtrati	on
Filter Type	Disposable Cas	ssette Filter
Filtration Surface Area	16m²	27m²
1 st stage	Mesh Spark Arr	estor
2 nd stage	Coarse 70% (G	4 pre-filter)
3 rd stage	ePM ₁ 65% (F8)	
4 th stage	Granule AC Filter	H13 HEPA Filter 11m²

Spare Filter Order Code

Coarse 70% (G4 pre-Filter)	1201G4OF01	
ePM ₁ 65% (F8)	1202F8AF02	
Base Filter	1203AKKF01	1202HPAF04

Product Order Code

Main unit without arm	221SMK9100	222SMK9100
Unit with 2m arm	221SMK9102	222SMK9102
Unit with 3m arm	221SMK9103	222SMK9103
Unit with 4m arm	221SMK9104	222SMK9104

Device Information	
Dimensions (W x D x H)	650 x 750 x 1285 mm
Weight (without arm)	131 kg
Arm Diameter	Ø152mm
Motor Power	1,5 kW
Supply Voltage	3x400V/50Hz
Noise Level	72 dB
Maximum Pressure	2200 Pa
Extraction Capacity	1300m³/h

SMK/920

Stationary UnitProvides Space Advantage

Double Acrobat Arm

Length Options

Activated Carbon Filter

Odor and Gas Retention

HEPA Filter

High Efficiency Filtration

Specifications

- · Easy to use in workshops which has limited spaces
- Reachable to desired area thanks to its flexible arm structure
- Fully complies with EU Machinery Safety Regulation
- Minimizing the loss of worktime by carrying out the maintenance only during filter change time thanks to the filter indicator buttons
- Minimizing the risk of fire related to the sparks thanks to its aluminium spark arrestor
- If the phase sequence is wrong or there is a missing phase, the device will not work and the motor will be protected from burning
- If the fan turns in the opposite direction, the warning lamp comes on.
- · Easy access thanks to external control panel

Usage Areas (Activated Carbon Filter)

- Designed to filter fume, dust and vapour occured during welding and chemical applications
- Suitable for unalloyed, low alloyed and high alloyed steel welding
- Suitable for filtering vapour occured during light level of chemical applications
- Proper to use for suction of odor molecules as well

Usage Areas (HEPA Filter)

- Designed to filter fume occured during welding applications of high alloy metals
- Suitable for unalloyed, low alloyed and high alloyed steel welding
- Suitable for filtering vapour occured during light and medium level of fume and dust
- It is suitable for environments where Hepa filter is required to return the purified air to the same ambient

General Information	AC Filter	HEPA Filter
Filter Information		
Filter Method	3 stages filtrati	ion
Filter Type	Disposable Cas	ssette Filter
Filtration Surface Area	16m ²	27m²
1 st stage	Mesh Spark Arr	estor
2 nd stage	Coarse 70% (G	4 pre-filter)
3 rd stage	ePM ₁ 65% (F8)	
4 th stage	Granule AC Filter	H13 HEPA Filter 11m²

Spare Filter Order Code

Coarse 70% (G4 pre-Filter)	1201G4OF01	
ePM ₁ 65% (F8)	1202F8AF02	
Base Filter	1203AKKF01	1202HPAF04

Product Order Code

Main unit without arm	221SMK9200	222SMK9200
Unit with 2m arm	221SMK9202	222SMK9202
Unit with 3m arm	221SMK9203	222SMK9203
Unit with 4m arm	221SMK9204	222SMK9204

Device Information	
Dimensions (W x D x H)	650 x 750 x 1285 mm
Weight (without arm)	132 kg
Arm Diameter	Ø152mm
Motor Power	1,5 kW
Supply Voltage	3x400V/50Hz
Noise Level	72 dB
Maximum Pressure	2200 Pa
Extraction Capacity	2 x 750m³/h

KMFSeries

Welding Table

Downdraft Table, Size Options Available

Mobile Unit
Lockable Wheels

Disposable Cassette Filter ePM₁ 65% (F8)

Specifications

- · Movable thanks to its wheeled structure
- Fume and dust are extracted before reaching to operator's respiratory tract thanks to downdraft extraction
- Fully complies with European Machinery Safety Regulation
- Minimizing the loss of worktime by carrying out the maintenance only during filter change time thanks to the filter indicator buttons
- Minimizing the risk of fire related to the sparks thanks to its washable aluminium mesh pre filter
- If the phase sequence is wrong or there is a missing phase, the device will not work and the motor will be protected from burning
- If the fan turns in the opposite direction, the warning lamp comes on
- 3 m feeding cable

Usage Areas

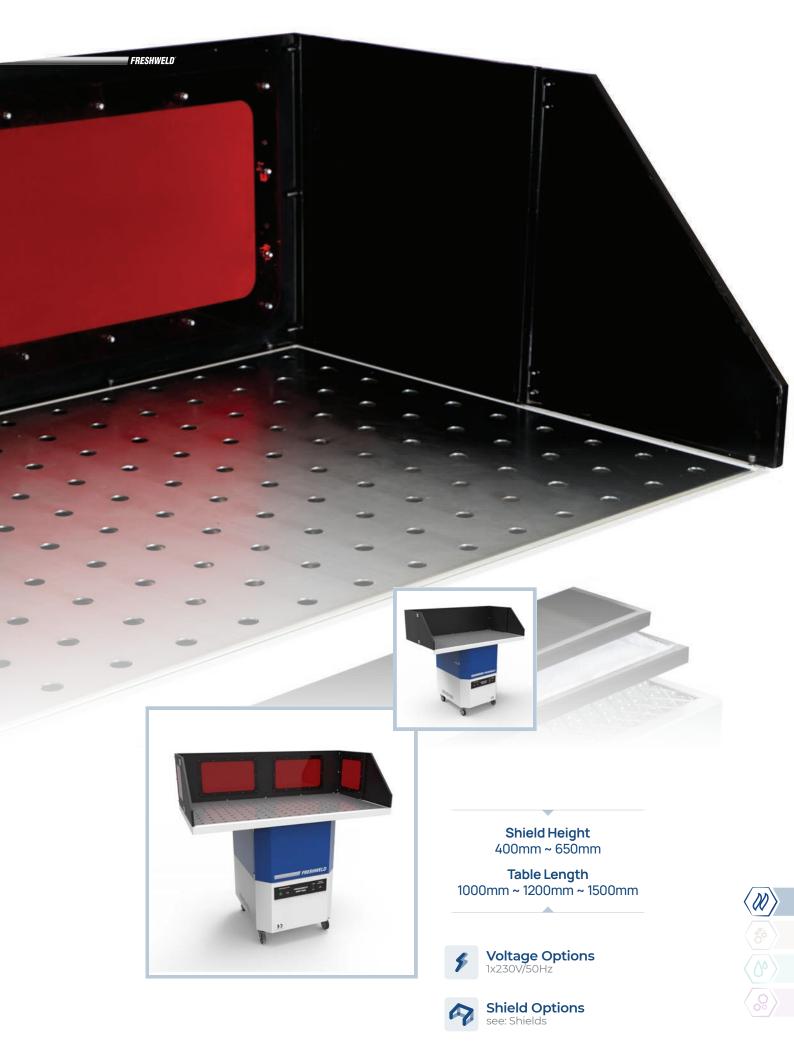
- Designed for filtering fume occured during welding applications
- Possible to use to prevent spreading fine dust occured during grinding applications to the area
- Suitable for filtering low and medium level of fume

General Information

Filter Information	
Filter Method	3 stages filtration
Filter Type	Disposable Cassette Filter
Filtration Surface Area	16m²
1 st stage	Mesh Spark Arrestor
2 nd stage	Coarse 70% (G4 pre-filter)
3 rd stage	ePM ₁ 65% (F8)

Spare Filter Order Code

Coarse 70% (G4 pre-Filter)	1201G4OF01
ePM ₁ 65% (F8)	1202F8AF02


Product Order Code

800 x 1000 mm	301KMF1000
800 x 1200 mm	301KMF1250
800 x 1500 mm	301KMF1500

Device Information	
Dimensions (W x D x H) (1)	800 x 1X00 x 1030 mm
Weight (without shield)	120 - 125 - 130 kg
Motor Power	1,5 kW
Supply Voltage	3x400V/50Hz
Noise Level	72 dB
Maximum Pressure	2200 Pa
Extraction Capacity	1300m³/h

KTMSeries

Specifications

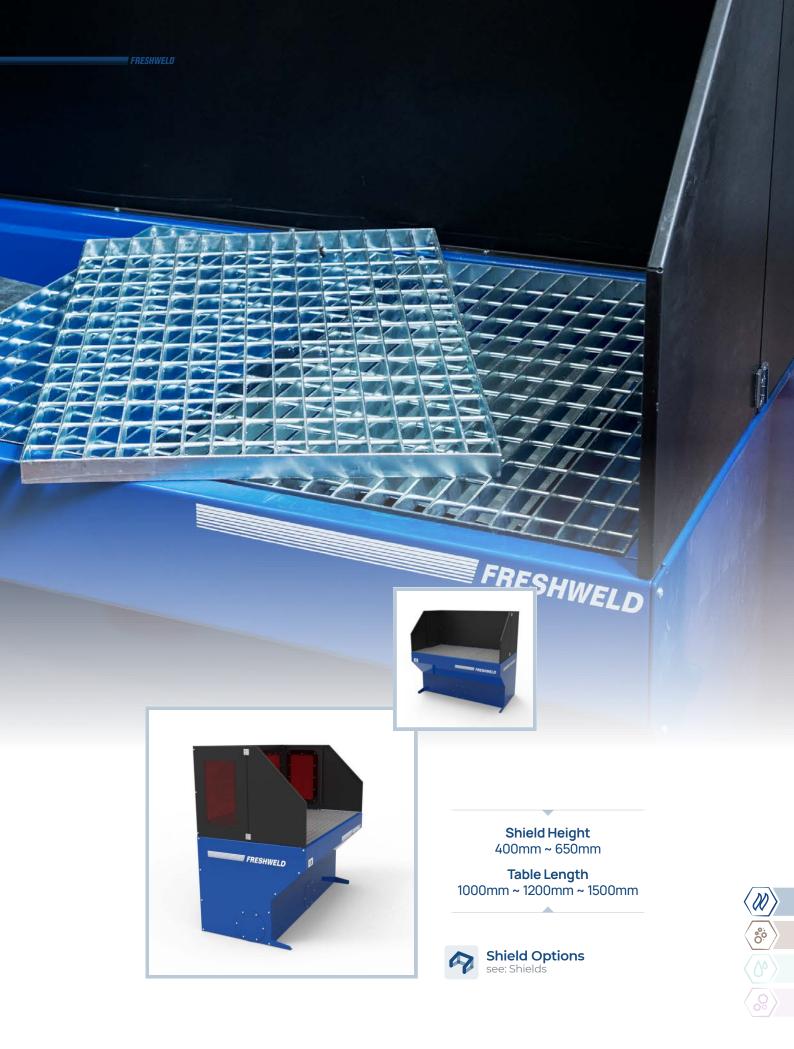
- Fume and dust are sucked before reaching to operator's respiratory tract thanks to downdraft extraction
- It supplies safe working environment thanks to its durable material structure
- Easy to clean collected particules thanks to integrated dust tray
- It is comfortable to work with its ergonomic design
- It has long-life with its thick and crom-coated grille
- Could be connected to the central ventilation system
- External filter or fan system could be connected
- Shield options prevent the particules to spread around

Usage Areas

- Designed for suction of dust occured during grinding applications of small metal parts
- Suitable to use for welding applications
- Suitable for light and coarse level of grinding

General Information

Recommended Required Extraction Capacity		
KTM/1000	3.000 m ³ /h	
KTM/1250	3.500 m ³ /h	
KTM/1500	4.500 m³/h	
Maximum Pressure Drop	500 Pa	


Table Order Codes

850 x 1000 mm Downdraft Table	321KTM1000
850 x 1200 mm Downdraft Table	321KTM1250
850 x 1500 mm Downdraft Table	321KTM1500

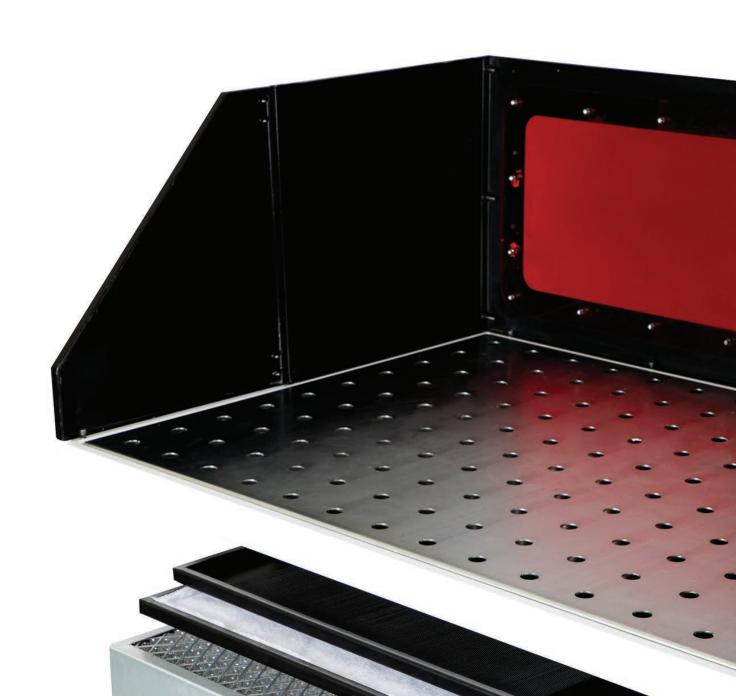
Table Information	
Cannal connection	Ø150mm - Ø200mm
Height of the Bench (1)	750mm

KMF Shield Without Visor

KMF/1000	h: 400mm	311SPR1040
KMF/1250	h: 400mm	311SPR1240
KMF/1500	h: 400mm	311SPR1540
KMF/1000	h: 650mm	311SPR1065
KMF/1250	h: 650mm	311SPR1265
KMF/1500	h: 650mm	311SPR1565

KTM Shield Without Visor

KTM/1000	h: 400mm	331SPR1040
KTM/1250	h: 400mm	331SPR1240
KTM/1500	h: 400mm	331SPR1540
KTM/1000	h: 650mm	331SPR1065
KTM/1250	h: 650mm	331SPR1265
KTM/1500	h: 650mm	331SPR1565



KMF Shield With Visor

KMF/1000	h: 400mm	31SPRP1040
KMF/1250	h: 400mm	31SPRP1240
KMF/1500	h: 400mm	31SPRP1540
KMF/1000	h: 650mm	31SPRP1065
KMF/1250	h: 650mm	31SPRP1265
KMF/1500	h: 650mm	31SPRP1565

KTM Shield With Visor

KTM/1000	h: 400mm	33SPRP1040
KTM/1250	h: 400mm	33SPRP1240
KTM/1500	h: 400mm	33SPRP1540
KTM/1000	h: 650mm	33SPRP1065
KTM/1250	h: 650mm	33SPRP1265
KTM/1500	h: 650mm	33SPRP1565

KTFSeries

Grinding TableDowndraft

MobilityLockable Wheels

Jet-Pulse Automatic Filter Cleaning

Specifications

- Fume and dust are sucked before reaching to operator's respiratory tract thanks to downdraft extraction
- It supplies safe working environment thanks to its durable material structure
- Easy to clean collected particules thanks to integrated dust tray
- It is comfortable to work with its ergonomic design
- Thanks to its wooden grill, the painted parts will not be scratched
- It prevents particles from spreading around with its three-sided closed shield system
- It provides high performance with low noise thanks to plug fan
- · Movable with its wheeled structure

Usage Areas

- Designed for suction of dust occured during grinding applications of small metal parts
- Suitable to use for welding applications
- Suitable for light and coarse level of grinding

General Information

Filter Information	
Filter Method	100% Poliester Cartridge Filter
Filter Type	PTFE Membrane Coated
Filtration Surface Area	20m²
Spare Filter Order Code	
PTFE Filter 350x850mm	1202KTF508
Product Order Code	
800 x 1500 mm	341KTF1500

Device Information		
Dimensions (W \times D \times H) $^{(1)}$	950 x 1500 x 1150 mm	
Weight (without shield)	750 mm	
Motor Power	2,2 kW	
Supply Voltage	3x400V/50Hz	
Noise Level	72 dB	
Maximum Pressure	1200 Pa	
Extraction Capacity	3600m³/h	

i8Series

Integrated System Cabin With Fan and Filter

Integrated with Central SystemCabin Without Fan And Filter

Specifications

- Supplies comprehensive solutions for your facility thanks to multiple assembly options
- Thanks to its modular design, it could be produced in special sizes for your application
- Welding curtains protect your personnel and equipment from sparks
- It filters 99% of extracted fumes with its integrated filter unit
- Easy access thanks to external control panel

Usage Areas

- Designed to extract fume occured during robotic welding applications
- Thanks to its aesthetic design, it could be used as hood for different applications

General Information

Single Compartment Modular Hoods

Order Codes	Dimensions mm	Flow m³/h	Pressure Drop Pa	Weight kg
4010181015	1000 × 1500	1200	300	60
4010181020	1000 x 2000	1600	300	70
4010181025	1000 x 2500	2000	300	80
4010181030	1000 x 3000	2400	300	90
4010181515	1500 × 1500	1800	300	72
4010181520	1500 x 2000	2400	300	85
4010181525	1500 x 2500	3000	300	97
4010181530	1500 x 3000	3600	300	101
4010182020	2000 × 2000	3200	300	98
4010182025	2000 x 2500	4000	300	112
4010182030	2000 × 3000	4800	300	129

TORFIL/125

Mig/Mag Welding On-Torch Extraction Unit

Jet-Pulse Automatic Filter Cleaning

Mobile Unit Lockable Wheels

Specifications

- · Non-stop operation
- Thanks to automatic-cleaning filter system, filters are cleaned automatically
- Collects dust and particles in the dust bucket
- Reliable protection thanks to high efficient cartridge filters
- 45mm hose connection

Usage Areas

- Designed to extract fumes occured during manual welding applications from the torch
- Suitable for filtering unalloyed, low alloy and high alloy steel.
- Provides high performance on corner welding, T Joint welding, and overlay welding
- · Not recommended for butt-welding

General Information

Filter Information	
Filter Method	Automatic Cleanable
Filter Type	e-PTFE membrane filter
Filtration Surface Area	4m²
Filter Info	ePM ₁₀ 60% (M6) 4m ²
Pressed Air Connection	5 – 6 bar

Spare Filter Order Code

One Connection Port	1001TRF125

Product Order Code

ePM ₁₀ 60% (M6) 4m ² 1	1202M6HV06
--	------------

Device Information	
Dimensions (W x D x H)	380 x 700 x 680 mm
Weight	76 kg
Motor Power	1,3 kW
Supply Voltage	3x400V/50Hz
Noise Level	68 dB
Maximum Pressure	20.000 Pa
Extraction Capacity	125m³/h

TORFIL/500

Robotic Welding
On-Torch Extraction Unit

Jet-Pulse Automatic Filter Cleaning

Mobile Unit Lockable Wheels

Specifications

- · Non-stop operation
- Thanks to automatic-cleaning filter system, filters are cleaned automatically
- Collects dust and particles in the dust bucket
- Reliable protection thanks to high efficient cartridge filters
- 80mm hose connection
- No need for additional compressor since it has self compressor

Usage Areas

- Designed to extract fumes occured during robotic welding applications from the torch
- Suitable for filtering unalloyed, low alloy and high alloy steel.
- In robotic welding applications, the extraction system is done on existing torch with torch-specific connection apparatus.

General Information

Filter Information	
Filter Method	Automatic Cleanable
Filter Type	e-PTFE membrane filter
Filtration Surface Area	10m²
Filter Info	ePM ₁₀ 60% (M6) 10m ²
Pressed Air Connection	Self Compressed
Spare Filter Order Code	
Four Connection Port	1011TRF500

Product Order Code

ePM ₁₀ 60% (Mb) 10m ² 1202M6HV0/	ePM ₁₀ 60% (M6) 10m ²	1202M6HV07
--	---	------------

Device Information	
Dimensions (W x D x H)	1200 x 650 x 2110 mm
Weight	130 kg
Motor Power	5,5 kW
Supply Voltage	3x400V/50Hz
Noise Level	74 dB
Maximum Pressure	36.000 Pa
Extraction Capacity	530 m³/h

TSFSeries

Extraction Fan Stationary Unit

Stationary UnitProvides Space Advantage

Single Acrobat Arm Length Options

Specifications

- Easy to use in workshops with limited spaces
- Reachable to desired area thanks to its flexible arm structure
- Fully complies with European Machinery Safety Regulation
- Supplies reliable usage thanks to powerful aluminium fan
- Prevents motor failures thanks to motor protection switch

Usage Areas

- Designed for extracting high level of dust and fume
- Used in places where there is no need for filter
- Suitable for extracting fume, gas, vapour and light dust

General Information

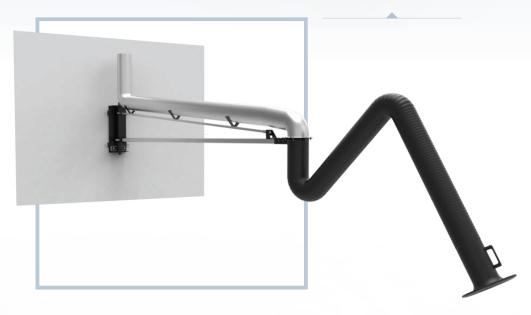
Device Information	
Supply Voltage	3x400V/50Hz
Noise Level	70 dB
Maximum Pressure	2000 Pa ~ 2200 Pa
Extraction Capacity	1.300m³/h

Spare Filter Order Code

Acrobat Arm Hose 1m	A244000246

Product Order Code

1,1 kW	921MSF1100
1,1 kW	921TSF1102
1,1 kW	921TSF1103
1,1 kW	921TSF1104
1,5 kW	921MSF1500
1,5 kW	921TSF1532
1,5 kW	921TSF1533
	1,1 kW 1,1 kW 1,1 kW 1,5 kW


Device Information	
Dimensions (W x D x H)	452 x 550 x 600 mm
Weight (without arm)	36 kg
Diameter of the Arm	Ø152mm
TSB Extension Console Length	3m ⁽¹⁾

MDTSeries

Specifications

- Easily movable to everywhere thanks to its wheeled structure
- Thanks to its flexible suction hose and magnet, it can be reached and fixed to the desired area
- Fully complies with European Machinery Safety Regulation
- Supplies reliable usage thanks to powerful aluminium fan
- Prevents motor failures thanks to motor protection switch

Usage Areas

- Designed for extracting high level of dust and fume
- Used in places where there is no need for filter
- Suitable for extracting fume, gas, vapour and light dust

General Information

Device Information	
Motor Power	1,1 kW
Supply Voltage	3x400V/50Hz
Noise Level	70 dB

Spare Filter Order Code

Product Order Code

Snail Fan without hose	931MDT1100
5m suction + 5m shot hose	931MDT1105
5m suction + 10m shot hose	931MDT1110
5m suction + 15m shot hose	931MDT1115

Device Information	
	/50550600
Dimensions (W x D x H)	452 x 550 x 600 mm
Weight (without arm)	40 kg
Diameter of the Arm	Ø152mm
Maximum Pressure	2000 Pa
Extraction Capacity	2900m³/h

TSASeries

Specifications

- Easy to use in workshops with limited spaces
- Reachable to desired area thanks to its flexible arm structure
- User friendly due to easy movement by one hand
- Protects arm position thanks to self supported design
- Acrobat arms can be connected to extraction ducts and fans with multiple connection options
- -40C ~ +90C durable anti-static Flame Retardant PU hose

Usage Areas

- Designed to connect to fans or central extraction systems
- Designed for extracting high level of dust and fume
- Suitable for extracting fume, gas, vapour and light dust

General Information

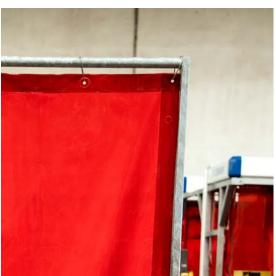
7m acrobat arm

General Information								
TSA Acrobat Arm								
Weight		10 - 18 kg						
Acrobat Arm Diameter	Ø152mm							
TSB Extension Conso	le ⁽¹⁾							
Weight	24 - 26 kg							
Hose diameter for exte	Ø150mm							
Length for TSB extension	3m							
Maximum Pressure Dro	р	1400 Pa						
Maximum Pressure Dro		1400 Pa						
Spare Filter Order Coo		1400 Pa A244000246						
Spare Filter Order Coo Acrobat Arm Hose	de							
	de							
Spare Filter Order Coo Acrobat Arm Hose Product Order Code 2m acrobat arm	de	A244000246						
Spare Filter Order Coo Acrobat Arm Hose Product Order Code 2m acrobat arm 3m acrobat arm	de	A244000246 911TSA0002						
Spare Filter Order Coo Acrobat Arm Hose Product Order Code	de	A244000246 911TSA0002 911TSA0003						

911TSA0034

Specifications

- Supplies comprehensive solutions for your facility thanks to multiple assembly options
- Thanks to its modular design, it can be produced in special sizes for your application
- Protects your personnel and equipments from welding arcs and spatter
- The curtain can be moved aside by rings
- Has certificates of DIN EN ISO 25980 / DIN EN 1598:2011-2


Usage Areas

- Separating individual work and facility area
- Protection against harmful beams, welding arcs and spatter

Options

• Can be produced on special sizes according to your project

General Info				
Order Code	Description	Size	Property	Certification
101KKP220	Welding Curtain	2x200mm	Red PVC Stripe	-
101KKP230	Welding Curtain	2x300mm	Red PVC Stripe	* DIN EN ISO 25980 / DIN EN 1598:2011-2
01KKP212	Welding Curtain	2x1200mm	Red Plate	* DIN EN ISO 25980 / DIN EN 1598:2011-2
101KKP014	Welding Curtain	0,40x1400mm	Red Plate	* DIN EN ISO 25980 / DIN EN 1598:2011-2
-				XPX
	- N		PRESHIVELO	
	A A		A	
	AFFINITE STATE OF THE STATE OF	***************************************		
	APPUNIT			
V N	Appropriate System			
	and the same of	Will and		Mh.
	Now of the	1	下草 3	
	1/1/2			
				/7
				CHARLES .
			9	
			34	
W WELDING P				
ISO PROBLEM	- 183			
25980:2014	计模型			
			1000	

MPSeries

Welding Screen DIN EN ISO 25980 Certified

Mobile with Wheels Lockable Wheels

DisassembledEasy To Store

Please Contact Us For **Tailored Solutions** To Your Projects

Specifications

- Supplies comprehensive solutions for your facility thanks to multiple assembly options
- Thanks to its modular design, it could be produced in special sizes for your application
- Protects your personnel and equipment from sparks
- The curtain can be moved aside by rings
- Easy to store and move thanks to its dissassembled feature
- Has certificates of DIN EN ISO 25980 / DIN EN 1598:2011-2

Usage Areas

- Separating individual work and facility area
- Protection against harmful beams, welding arcs and spatter

Options

• Can be produced on special sizes according to your project

Order Code	Description	Property	Screen Size	Curtain Size
1111MP1420	Welding Screen	Red Curtain	1460x2000mm	0.40x1400x1800mm

PulsatronCompact

Central Filtration System

Dry Smoke and Dust

Jet-Pulse

Automatic Filter Cleaning

Cartridge Eilter

HEPA Filter

High Efficiency Filtration

Specifications

- Commits emission value as ≤ 5 mg/Nm³
- Low noise level of 68 75 dBA
- With integrated Jet-Pulse automatic filter cleaning system, it cleans own filters with compressed air.
- Adds aesthetics to your business with its modular structure
- It can be produced with a minimum capacity of 1000 m³/h and a maximum of 48000 m³/h

Usage Areas

- Designed for filtration of smoke and dust generated during industrial applications
- Suitable for welding, grinding, sandblasting, laser cutting, plasma cutting and polishing applications.

Options

- · Silencers
- 3-color LED filter pollution indicator
- Integrated HEPA filter for absolute filtration
- · Automatic dust discharge system
- Mechanical shaking system to clean the cartridges
- Start & Stop or frequency adjustable electrical panel
- Horizontal spark arresting cyclone for special applications

Order Codes	AirFlow m³/h	Pressure Pa	Power kW	Surface m ²	Velocity m/s	Connection mm	Dimensions LxPxH (mm)
511PCTV001	1000 – 1500	2000 - 1750	1,5	20	0,020	Ø 160	850x930x2815
511PCTV002	1500 – 2000	1750 – 1490	1,5	20	0,028	Ø 200	850×930×2815
511PCTV003	1500 – 2500	2700 - 2100	3	40	0,017	Ø 250	850×930×2815
511PCTV004	2000 - 4000	3200 - 2100	4	40	0,028	Ø 250	850×930×2815
511PCTV005	4000 - 5000	2100 - 1800	4	40	0,035	Ø 300	850×930×2815
511PCTV006	5000 - 5800	1800 – 1500	4	80	0,020	Ø 320	850x930x2815
511PCTV007	6000 – 7000	2000 - 1650	5,5	80	0,024	2 x Ø 250	1700×930×2425
511PCTV008	7000 – 8000	2800 - 2650	7,5	80	0,028	2 x Ø 250	1700×930×2425
511PCTV009	8000 - 9000	2650 - 2150	7,5	120	0,020	3 x Ø 250	2550x930x2425
511PCTV010	9000 - 11000	2450 - 2200	2 x 5,5	160	0,019	4 x Ø 250	3400×930×2425
511PCTV011	11000 – 14000	3050 – 2800	2 x 7,5	160	0,024	4 x Ø 250	3400×930×2425

CleanMist

CentrifugalFiltration System

HEPA Filter High Efficiency Filtration

Specifications

- Simple & Quick installation
- · High Efficiency
- · Low Noise
- Reduced maintenance thanks to the self-cleaning impeller
- Technical assistance and after-sales service

Usage Areas

- It is designed for the purification of steam and dirty liquids from lathes and CNC machine tools.
- Suitable for grinding machines and component washing machines

Options

- Silencers
- HEPA filters
- Electrostatic Final Filter (FEF)
- Pre-drainage systems to prevent overloading the filters
- Baffles to ensure optimum performance
- Wide range of supporting frames for specific installation requirements
- Instruments to notify the condition of the filters including a usage gauge to determine maintenance requirements.

Order Codes	AirFlow m³/h	Power kW	Noise dB(a)	Weight kg	Connection mm	Dimensions L×W×H (mm)
601FCM0300	300	0,55	65	15	Ø 100	400 × 400 × 400
601FCM0500	500	0,55	65	15	Ø 150	400 × 400 × 400
601FCM1000	1000	1,5	74	35	Ø 100	500 x 500 x 600
601FCM1400	1400	1,5	74	35	Ø 150	500 x 500 x 600
601FCM1800	1800	2,2	76	40	Ø 150	500 x 500 x 600
601FCM2300	2300	2,2	76	40	Ø 200	500 x 500 x 600

MCOS

Central Filtration System

Oil-Mist Filtration

Disposable Cassette Filter

F7 - F9 - H11 Filters

HEPA Filter High Efficiency Filtration

Specifications

- High Efficiency
 99,99% for particles larger than 1µm
 99% for particles larger than 0,5 µm
 95% for particles larger than a 0,2 µm
- Easy installation with customized solutions
- Costs saving management and maintenance
- Provides maximum efficiency with in-line filters of F7 F9 H11 class

Usage Areas

- Used in CNC, Lathe, Clamping, Drilling, Threading, Tapping, Saw cutting benches
- For oil-mist filtration of cutting oils that using petroleum oil.

Options

- · Silencers
- Start & Stop or frequency adjustable electrical panel
- H11 or H13 class HEPA filter option
- 3-color LED filter pollution indicator
- In applications requiring low capacity, it does not take up much space in your workshop with the MCOS mini series.

MCOS

Order Codes	AirFLow m³/h	Power kW	Filtration Stages	Weight kg	Connections mm	Dimensions L×W×H (mm)
611MCOS200	2000	2,2	3	330	Ø 200	730 x 685 x 2350
611MCOS400	4000	5,5	6	530	Ø 300	730 x 1280 x 2650
611MCOS800	8000	7,5	12	990	500 x 300	1460 x 1280 x 2850

MCOS Mini

Order Codes	Installation G - R	AirFlow m³/h	Power kW	Filtration Stages	Weight kg	Connections mm	Dimensions L×W×H (mm)
611MINI100	G-Ground	1000	1,1	2	90	Ø 150	530 x 555 x 1565
611MINI101	R-CounterTop	1000	1,1	2	75	Ø 150	530 x 555 x 1255

MISTCompact

HEPA Filter

High Efficiency Filtration

Cartridge Filter

Specifications

- Efficiency Emissions ≤ 5 mg/Nm³*
- · Energy saving
- Improve the working environment
- · Easy installation
- · Customized systems solutions
- Technical assistance and after-sales service
- Costs saving of management and maintenance

Usage Areas

- Used in CNC, Lathe, Clamping, Drilling, Threading, Tapping, cutting and general mechanical machining benches
- For oil mist filtration of cooling oils emulsified with water.

Options

- · Silencers
- Start & Stop or frequency adjustable electrical panel
- H11 or H13 class HEPA filter option
- 3-color LED filter pollution indicator

* Other emissions reachable on request

Order Codes	AirFlow m³/h	Power kW	Pressure Pa	Surface m ²	Connection mm	Dimensions LxPxH (mm)
621MC02TV1	1.500	1,5	1800	42	Ø300	850 x 900 x 3215
621MC04TV2	3.000	3	1800	84	Ø300	850 x 900 x 3215
621MC08TV3	6.000	5,5	2000	168	Ø300	1700 × 900 × 2815
621MC12TV4	8.000	7,5	2450	252	Ø300	2550 x 900 x 3215
621MC16TV5	12.000	2 x 5,5	2000	336	Ø300	3400 x 900 x 3215
621MC20TV6	14.000	2 × 7,5	2450	420	Ø300	4250 x 900 x 3215

Please Contact Us For Tailored Solutions To Your Projects

FilterTower

Plug & Run All-in-One Standalone Unit

Jet-Pulse

Automatic Filter Cleaning

Nano Filtering
Fiber Layered

Specifications

- Suitable for use in all sizes of workspaces
- The filter tower can work by itself. In addition, the hood does not need an air duct or chimney.
- It only needs electrical connection and compressed air connection for automatic filter cleaning for operation.
- Made of high-tech polycarbonate construction resistant to impacts, scratches and heat.
- Its capacity is standardized to be minimum 5000 m³/h and maximum 20000 m³/h

Usage Areas

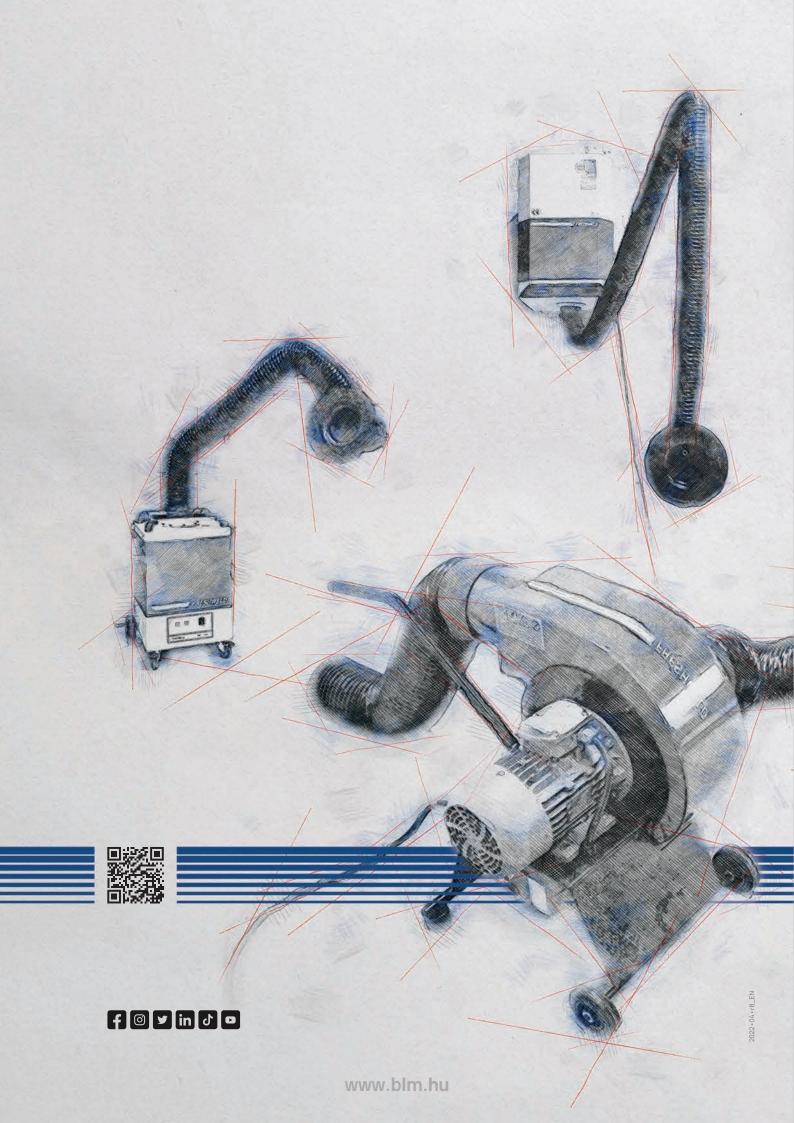
- It is used in workspaces where the large parts are produced and local suction systems such as acrobat arms cannot be used.
- It can be used for emissions from different technical processing processes such as fumes, dust particles, aerosols and gaseous air pollutants.

Options

- Tested and manufactured according to IFA W3 standards
- · Remote controllable
- Working only when the air is polluted with the air quality sensor and shutting itself off when the filtration is finished.
- Extra energy saving and noise reduction with the efficiency package
- Extra safety package for flying sparks and fire hazard
- Activated Carbon filter mats for gas cleaning and odor reduction
- Reduced operating costs with nano-fiber layers cartridges

Please Contact Us For **Tailored Solutions** To Your Projects

Order Codes	Capacity m³/h	Power kW	Pressure Pa	Surface m ²	Filter Stages	Weight kg	Dimensions L×W×H (mm)
711NVSFT05	5000	5,5	62000	80	4	990	1619x1675x2885
711NVSFT10	10000	7,5	2100	148	4	1280	1619x1675x3643
711NVSFT15	15000	11	1550	222	6	1480	2066x1756x3643
711NVSFT20	20000	15	1900	222	6	1590	2066x1756x3643
711IFAW305	5000 IFA W3	5,5	2000	84	4	990	1619x1675x2885
711IFAW310	10000 IFA W3	7,5	2100	151	4	1280	1619x1675x3643
711IFAW315	15000 IFA W3	11	1550	226	6	1480	2066x1756x3643
711IFAW320	20000 IFA W3	15	1900	226	6	1590	2066x1756x3643
711ECBLU08	8000 ECBlue	3,9	2000	80	4	990	1619x1675x2885
711ECBLU14	14000 ECBlue	2 x 3,9	2100	148	4	1280	1619x1675x3643
711ECBLU18	18000 ECBlue	3 x 3,9	1550	222	6	1480	2066x1756x3643
711ECBLU23	23000 ECBlue	4 x 3,9	1900v	222	6	1590	2066x1756x3643


NOTES

NOTES

NOTES

```
1 - KTF/1500 #34
2 - M2/2200 #12
3 - SMK/910 #24
4 - M1/1100 #8
5 - MDT Series #44
```